細菌基因組完成圖真菌基因組完成圖微生物群落多樣性宏基因組測序服務全長轉錄組測序第三代測序服務非靶向代謝組學靶向代謝組學脂質組學離子組學脂肪酸檢測氨基酸檢測代謝組學服務定量蛋白質組服務雙向電泳服務修飾蛋白質組蛋白質芯片蛋白質譜鑒定蛋白互作檢測Western Blot蛋白質組學服務高通量測序數據分析蛋白質組學數據分析代謝組學數據分析芯片數據分析GO/Pathway富集分析相關性和聚類分析共表達網絡圖靶基因預測調控網絡圖蛋白相互作用網絡圖生物信息學服務CRISPR/Cas9載體構建穩定細胞系構建服務模式生物制備服務CRISPR/Cas9技術服務甲基化測序服務甲基化芯片服務甲基化驗證服務DNA甲基化服務lncRNA測序服務lncRNA芯片服務lncRNA定量PCR驗證lncRNA過表達服務lncRNA抑制服務lncRNA技術服務miRNA測序服務miRNA芯片服務miRNA定量PCR驗證miRNA過表達服務miRNA抑制服務miRNA靶基因驗證服務miRNA技術服務環狀RNA測序服務環狀RNA芯片服務環狀RNA定量PCR驗證環狀RNA過表達服務環狀RNA抑制服務環狀RNA技術服務轉錄組測序服務表達譜測序服務mRNA/lncRNA/環狀RNA 三合一芯片表達譜芯片服務熒光定量PCR驗證mRNA過表達服務mRNA抑制服務mRNA技術服務轉錄因子篩選服務抗體制備服務ChiP-Seq測序服務ChiP-qPCR技術服務EMSA技術服務luciferase 實驗服務轉錄因子技術服務mRNA定量PCR檢測miRNA定量PCR檢測lncRNA定量PCR檢測環狀RNA定量PCR檢測DNA拷貝數檢測相對定量PCR服務絕對定量PCR服務熒光定量PCR服務整體課題服務SNP分型檢測服務SSR/STR技術服務病毒包裝服務CRISPR/Cas9技術試劑miRNA功能研究試劑lncRNA功能研究試劑環狀RNA功能研究試劑mRNA功能研究試劑發表文獻樣品準備服務流程基金申請

南粤36选7开奖结果查询:同一用戶發表 ES&T和 PLoS ONE

文章附圖

体育彩票36选7开奖查询 www.xhkvu.com   言行生物芯片和蛋白質組服務用戶--中科院水生所發表 ES&T和 PLoS ONE。

      中國科學院水生生物研究所趙雁雁博士利用言行生物公司提供的miRNA芯片服務和蛋白質組學服務,于2011年先后發表了《PLoS ONE》(影響因子:3.234)和 ES&T (Environmental Science & Technology,影響因子:5.33)。詳情如下:


PLoS ONE 6(7): e22676. doi:10.1371/journal.pone.0022676

Analysis of MicroRNA Expression in Embryonic Developmental Toxicity Induced by MC-RR

Yanyan Zhao1,2#, Qian Xiong1,2#, Ping Xie1*

1 Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, People's Republic of China, 2 Graduate School of the Chinese Academy of Sciences, Wuhan, People's Republic of China

Received: February 14, 2011; Accepted: June 29, 2011; Published: July 29, 2011

Abstract

As cynobacterial blooms frequently occur in fresh waters throughout the world, microcystins (MCs) have caused serious damage to both wildlife and human health. MCs are known to have developmental toxicity, however, the possible molecular mechanism is largely unknown. This is the first toxicological study to integrate post-transcriptomic, proteomic and bioinformatics analysis to explore molecular mechanisms for developmental toxicity of MCs in zebrafish. After being microinjected directly into embryos, MC-RR dose-dependently decreased survival rates and increased malformation rates of embryos, causing various embryo abnormalities including loss of vascular integrity and hemorrhage. Expressions of 31 microRNAs (miRNAs) and 78 proteins were significantly affected at 72 hours post-fertilisation (hpf). Expressions of miR-430 and miR-125 families were also significantly changed. The altered expressions of miR-31 and miR-126 were likely responsible for the loss of vascular integrity. MC-RR significantly reduced the expressions of a number of proteins involved in energy metabolism, cell division, protein synthesis, cytoskeleton maintenance, response to stress and DNA replication. Bioinformatics analysis shows that several aberrantly expressed miRNAs and proteins (involved in various molecular pathways) were predicted to be potential MC-responsive miRNA-target pairs, and that their aberrant expressions should be the possible molecular mechanisms for the various developmental defects caused by MC-RR.




Genomic Profiling of MicroRNAs and Proteomics Reveals an Early Molecular Alteration Associated with Tumorigenesis Induced by MC-LR in Mice

Yanyan Zhao?, Ping Xie?*, and Huihui Fan?

Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, People’s Republic of China

Fisheries College of Huazhong Agricultural University, Wuhan 430070, People’s Republic of China

Environ. Sci. Technol., Article ASAP

DOI: 10.1021/es201514h

Publication Date (Web): September 1, 2011

Copyright ? 2011 American Chemical Society

Abstract

Studies have demonstrated that microcystins (MCs) can act as potential carcinogens and have caused serious risk to public environmental health. The molecular mechanisms of MC-induced susceptibility to carcinogenesis are largely unknown. In this study, we performed for the first time a comprehensive analysis of changes in microRNAs (miRNAs) and proteins expression in livers of mice treated with MC-LR. Utilizing microarray and two-dimensional gel electrophoresis (2-DE) analysis, we identified 37 miRNAs and 42 proteins significantly altered. Many aberrantly expressed miRNAs were related to various cancers (e.g., miR-125b, hepatocellular carcinoma; miR-21, leukemia; miR-16, chronic lymphocytic leukemia; miR-192, pituitary adenomas; miR-199a-3p, ovarian cancer; miR-34a, pancreatic cancer). Several miRNAs (e.g., miR-34a, miR-21) and proteins (e.g., TGM2, NDRG2) that play crucial roles in liver tumorigenesis were first found to be affected by MC-LR in mouse liver. MC-LR also altered the expression of a number of miRNAs and proteins involved in several pathways related to tumorigenesis, such as glutathione metabolism, VEGF signaling, and MAPK signaling pathway. Integration of post-transcriptomics, proteomics, and transcriptomics reveals that the networks miRNAs and their potential target genes and proteins involved in had a close association with carcinogenesis. These results provide an early molecular mechanism for liver tumorigenesis induced by MCs.